Measurement: Same Area, Different Perimeter

Aim:

I can recognise that shapes with the same areas can have different perimeters and vice versa.

I can find shapes with the same area but different perimeters.

Success Criteria: I can find squares and rectangles which have the same area. I can organise my results to ensure I have found all possible variations.	Resources: Lesson Pack Squared paper
Key/New Words: Area, perimeter, investigate, order.	Preparation: Differentiated Area and Perimeter Activity Sheet - one per child Extra Challenge Activity Sheet - as needed

Prior Learning: It will be helpful if children know how to calculate area and perimeter.

Learning Sequence

(123	Calculating Area: Children calculate the area of a variety of squares and rectangles shown on the Lesson Presentation, using cm^{2} and m^{2}. They also calculate the area of composite rectilinear shapes.	\bigcirc
	Area and Perimeter: Using whole-number measurements, children find squares and rectangles which have areas of $36 \mathrm{~cm}^{2}$. Use the Lesson Presentation to explain how using an ordered table helps to find all possibilities. They then find all squares and rectangles which have areas of $24 \mathrm{~cm}^{2}$, using whole-number measurements.	\bigcirc
${ }^{\circ}{ }^{n}$	Linking Area and Perimeter: Children complete the differentiated Area and Perimeter Activity Sheet, finding squares and rectangles with a given area. Using whole-number Using plain paper, so measurements, children they calculate rather find all the possible than count squares, rectangles and squares children find all the with areas of $12 \mathrm{~cm}^{2}$ possible rectangles and $20 \mathrm{~cm}^{2}$. and squares with areas of $32 \mathrm{~mm}^{2}$ and $28 \mathrm{~mm}^{2}$. Children answer a reasoning question, working out the dimensions of a shape, with clues given. Children predict all the possible rectangles and squares with areas of $44 \mathrm{~mm}^{2}$ and $66 \mathrm{~mm}^{2}$, then test their predictions by drawing. Children answer a reasoning question, proving whether a statement is correct or not and explaining why. An Extra Challenge Activity Sheet is also included.	Θ
(\sim°	Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative activity. These sheets might not nwecessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding. Children use their knowledge of how to calculate with the area and perimeter of rectilinear shapes in order to complete fluency problems. Children explore answering reasoning problems which involve calculating with the area and perimeter of rectilinear shapes. Children use problem solving skills in order to answer an open-ended task that involves a greater depth of thinking when calculating with the area and perimeter of rectilinear shapes.	\square
8	Factors, Area, Perimeter: Children discuss how finding factors helps with the investigations in this lesson. They use knowledge of factors to find all the possible shapes which have an area of 36 square units.	\bigcirc

Exploreit

Factorit: Children use their knowledge of factors to find all the possible shapes with different areas.
Playit: Children play a game in pairs. They take turns to roll two dice and multiply the numbers rolled to create a new number. They then find all the shapes they can which have an area equal to this number. In each round, the player who finds the most shapes scores one point. If both players find the same number of shapes, each player scores one point.

Maths

Measurement

\qquad

Same Areas Different Perimeter

Aim

- I can investigate shapes with the same area but different perimeters.

Success Criteria

- I can find squares and rectangles which have the same area.
- I can organise my results to ensure I have found all possible variations.

Calculating Area

Calculate the area of these shapes. If the unit measurements are centimetres, the answer will be in $\mathbf{c m}^{2}$. If the measurements are metres, the answer will be in \mathbf{m}^{2}.

Calculating Area

Calculate the area of these shapes. If the unit measurements are centimetres, the answer will be in $\mathbf{c m}^{2}$. If the measurements are metres, the answer will be in \mathbf{m}^{2}.

Calculating Area

Calculate the area of these shapes. If the unit measurements are centimetres, the answer will be in $\mathbf{c m}^{2}$. If the measurements are metres, the answer will be in \mathbf{m}^{2}.

Area and Perimeter

How do you calculate the

Area and Perimeter

Calculate the areas and perimeters of these shapes.

What did you notice?
Both shapes had the same area, but different perimeters.

Area and Perimeter

On the previous slide, both shapes had areas of $36 \mathrm{~cm}^{2}$, but different perimeters (24 cm and 30 cm). Using whole-number measurements, how many other rectangles or squares can you find that have an area of $36 \mathrm{~cm}^{2}$ but different perimeters?

We could record our results in a table.

Area and Perimeter

How can we make sure we have all the possibilities?

This is fine, but we can't count this twice, as both shaperaive the same

We could order the sides.

Side 1	Side 2	Perimeter
3 cm	38 cm	30 cm
18 cm	18 cm	40 cm
36 cm	18 cm	30 cm
6 cm	$\theta \mathrm{~cm}$	26 cm
6 cm	8 cm	26 cm

Area and Perimeter

Using whole-number measurements, find as many squares and rectangles you can which have an area of $24 \mathrm{~cm}^{2}$, but have different perimeters.

Side 1	Side 2	Perimeter
4 cmm	2660 mm	80 cm
3cm	18 cam	28 cm
3 cm	128 cam	28 cm
4 cmm	26 cm	80 cm

Linking Area and Perimeter

Diving into Mastery

Dive in by completing your own activity!

Factors, Area, Perimeter

Factors, Area, Perimeter

Aim

- I can investigate shapes with the same area but different perimeters.

Success Criteria

- I can find squares and rectangles which have the same area.
- I can organise my results to ensure I have found all possible variations.

Regent Studies | www.regentstudies.com

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Regent Studies | www.regentstudies.com

Area and Perimeter

I can find shapes with the same area but different perimeters.

1. Use cm squared paper and find all the squares or rectangles you can which have an area of $12 \mathrm{~cm}^{2}$. What different perimeters did your shapes make?

Perimeters of shapes with an area of $12 \mathrm{~cm}^{2}$:
2. Record the shapes in this table, ordering them so that you are sure that you have found all the squares and rectangles with an area of $12 \mathrm{~cm}^{2}$:

Side 1	Side 2	Perimeter

3. Find and record all the squares or rectangles you can find with an area of $20 \mathrm{~cm}^{2}$.

Side 1	Side 2	Perimeter

Area and Perimeter Answers

1. Use cm squared paper and find all the squares or rectangles you can which have an area of $12 \mathrm{~cm}^{2}$. What different perimeters did your shapes make?
Perimeters: $14 \mathrm{~cm}, 16 \mathrm{~cm}, 26 \mathrm{~cm}$ (in any order)
2. Record the shapes in this table, ordering them so that you are sure that you have found all the squares and rectangles with an area of $12 \mathrm{~cm}^{2}$:

Side 1	Side 2	Perimeter
12 cm	1 cm	26 cm
6 cm	2 cm	16 cm
4 cm	3 cm	14 cm

Side 1	Side 2	Perimeter
1 cm	12 cm	26 cm
2 cm	6 cm	16 cm
3 cm	4 cm	14 cm

or it could also be written the other way:

Side 1	Side 2	Perimeter
4 cm	3 cm	14 cm
6 cm	2 cm	16 cm
12 cm	1 cm	26 cm

| or | Side 1 | Side 2 |
| :---: | :---: | :---: | Perimeter | 3 cm | 4 cm | 14 cm |
| :---: | :---: | :---: |
| 2 cm | 6 cm | 16 cm |
| 1 cm | 12 cm | 26 cm |

3. Find and record all the squares or rectangles you can find with an area of $20 \mathrm{~cm}^{2}$.

Side 1	Side 2	Perimeter
20 cm	1 cm	42 cm
10 cm	2 cm	24 cm
5 cm	4 cm	18 cm

Side 1	Side 2	Perimeter
1 cm	20 cm	42 cm
2 cm	10 cm	24 cm
4 cm	5 cm	18 cm

or it could also be written the other way:

Side 1	Side 2	Perimeter
5 cm	4 cm	18 cm
10 cm	2 cm	24 cm
20 cm	1 cm	42 cm

or

Side 1	Side 2	Perimeter
4 cm	5 cm	18 cm
2 cm	10 cm	24 cm
1 cm	20 cm	42 cm

Area and Perimeter

I can find shapes with the same area but different perimeters.

1. Use plain paper and find all the squares or rectangles you can which have an area of $32 \mathrm{~mm}^{2}$. What different perimeters did your shapes make?

Perimeters of shapes with an area of $32 \mathrm{~mm}^{2}$:
2. Record the shapes in this table, ordering them so that you are sure that you have found all the squares and rectangles with an area of $32 \mathrm{~mm}^{2}$. (You may not need all the rows in the table).

Side 1	Side 2	Perimeter

3. Find and record all the squares or rectangles you can find with an area of $28 \mathrm{~mm}^{2}$. (You may not need all the rows in the table).

Side 1	Side 2	Perimeter

4. A shape has an area of $40 \mathrm{~cm}^{2}$. One of its sides has a length more than $5 \mathrm{~cm}^{2}$ and less than $10 \mathrm{~cm}^{2}$. What are the dimensions of the shape?

Challenge - try to answer this question without drawing the shape.

Area and Perimeter Answers

1. Perimeters: $66 \mathrm{~mm}, 36 \mathrm{~mm}, 24 \mathrm{~mm}$ (in any order)
2.

Side 1	Side 2	Perimeter
32 mm	1 mm	66 mm
16 mm	2 mm	36 mm
8 mm	4 mm	24 mm

Side 1	Side 2	Perimeter
1 mm	32 mm	66 mm
2 mm	16 mm	36 mm
4 mm	8 mm	24 mm

or it could also be written the other way:

Side 1	Side 2	Perimeter
8 mm	4 mm	24 mm
16 mm	2 mm	36 mm
32 mm	1 mm	66 mm

or

Side 1	Side 2	Perimeter
4 mm	8 mm	24 mm
2 mm	16 mm	36 mm
1 mm	32 mm	66 mm

3.

Side 1	Side 2	Perimeter
28 mm	1 mm	58 mm
14 mm	2 mm	32 mm
7 mm	4 mm	22 mm

Side 1	Side 2	Perimeter
1 mm	28 mm	58 mm
2 mm	14 mm	32 mm
4 mm	7 mm	22 mm

or it could also be written the other way:

Side 1	Side 2	Perimeter
7 mm	4 mm	22 mm
14 mm	2 mm	32 mm
28 mm	1 mm	58 mm

or

Side 1	Side 2	Perimeter
4 mm	7 mm	22 mm
2 mm	14 mm	32 mm
1 mm	28 mm	58 mm

4. A shape has an area of $40 \mathrm{~cm}^{2}$. One of its sides has a length more than $5 \mathrm{~cm}^{2}$ and less than $10 \mathrm{~cm}^{2}$. What are the dimensions of the shape?
$8 \mathrm{~cm} \times 5 \mathrm{~cm}$

Area and Perimeter

I can find shapes with the same area but different perimeters.

Try to do these questions just by calculating without drawing the shapes, then check by drawing.

1. Find all the squares or rectangles you can which have an area of $44 \mathrm{~mm}^{2}$. What different perimeters did your shapes make?

Perimeters of shapes with an area of $44 \mathrm{~mm}^{2}$:
2. Record the shapes in this table, ordering them so that you are sure that you have found all the squares and rectangles with an area of $44 \mathrm{~mm}^{2}$. (You may not need all the rows in the table).

Side 1	Side 2	Perimeter

3. Find and record all the squares or rectangles you can find with an area of $66 \mathrm{~mm}^{2}$. (You may not need all the rows in the table).

Side 1	Side 2	Perimeter

4. A rectangle or square with an odd number area (for example, $45 \mathrm{~cm}^{2}$) will always have an even numbered perimeter. Is this correct? Give at least 2 examples to show if this is correct or not. Can you explain why?

Area and Perimeter Answers

1. Perimeters: $90 \mathrm{~mm}, 48 \mathrm{~mm}, 30 \mathrm{~mm}$ (in any order)
2.

Side 1	Side 2	Perimeter
44 mm	1 mm	90 mm
22 mm	2 mm	48 mm
11 mm	4 mm	30 mm

Side 1	Side 2	Perimeter
1 mm	44 mm	90 mm
2 mm	22 mm	48 mm
4 mm	11 mm	30 mm

or it could also be written the other way:

Side 1	Side 2	Perimeter
11 mm	4 mm	30 mm
22 mm	2 mm	48 mm
44 mm	1 mm	90 mm

or \quad Side 1	Side 2	Perimeter
	11 mm	30 mm
	22 mm	48 mm
	44 mm	90 mm

3.

Side 1	Side 2	Perimeter
66 mm	1 mm	134 mm
33 mm	2 mm	70 mm
22 mm	3 mm	50 mm
11 mm	6 mm	34 mm

or

Side 1	Side 2	Perimeter
1 mm	66 mm	134 mm
2 mm	33 mm	70 mm
3 mm	22 mm	50 mm
6 mm	11 mm	34 mm

or it could also be written the other way:

Side 1	Side 2	Perimeter
11 mm	6 mm	34 mm
22 mm	3 mm	50 mm
33 mm	2 mm	70 mm
66 mm	1 mm	134 mm

or

Side 1	Side 2	Perimeter
6 mm	11 mm	34 mm
3 mm	22 mm	50 mm
2 mm	33 mm	70 mm
1 mm	66 mm	134 mm

4. Children give 2 examples where the area has an odd number and the perimeter is even. Explanation shows that the perimeter will always be even, because if you add together the length and the width and multiply it by 2, the answer will always be even. Multiplying by 2 always gives an even multiple.
1) a) Perimeter $=52 \mathrm{~cm}$ Area $=153 \mathrm{~cm}^{2}$
b) Perimeter $=21 \mathrm{~m}$ Area $=27 \mathrm{~m}^{2}$
c) Perimeter $=56 \mathrm{~cm}$ Area $=116.2 \mathrm{~cm}^{2}$
2) a)

Perimeter $=24 \mathrm{~cm}$
Area $=32 \mathrm{~cm}^{2}$

Perimeter $=14 \mathrm{~m}$
Area $=10 \mathrm{~m}^{2}$

1) Alice's statement is true. $A 2 \mathrm{~cm} \times 2 \mathrm{~cm}$ square will give an area of $4 \mathrm{~cm}^{2}$ and a perimeter of 8 cm . A $\mathrm{cm} \times 4 \mathrm{~cm}$ rectangle will give an area of $4 \mathrm{~cm}^{2}$ and a perimeter of 10 cm . shapes with different dimensions are also possible.

Oliver's statement is true. A $4 \mathrm{~cm} \times 4 \mathrm{~cm}$ square will give an area of $16 \mathrm{~cm}^{2}$ and a perimeter of 16 cm .
Another solution is a $6 \mathrm{~cm} \times 3 \mathrm{~cm}$ rectangle which will give an area of $18 \mathrm{~cm}^{2}$ and a perimeter of 18 cm .

2) a) Ben is partly correct. He is correct in thinking that the area will be three times that of the original square, however, the new shape has four of the original sides inside the shape, therefore its perimeter will not be three times as large as the original square's perimeter.
b) The area of the new shape will be $147 \mathrm{~cm}^{2}$ as
$7 \times 7=49 \mathrm{~cm}^{2}$ and
$3 \times 49 \mathrm{~cm}^{2}=147 \mathrm{~cm}^{2}$
The new shape has four of the original square's sides inside the shape, therefore its perimeter is 56 cm .

1) a) Im^{2} of a fence panel $=£ 20$ per m${ }^{2}$
b) I metre of the length of wooden frame around the panel = £10 per metre
2) a) $£ 280=4 m \times 2 m$ or $2 m \times 4 m$ panel
b) $£ 300=7 m \times 1 \mathrm{~lm}$ or $1 \mathrm{~m} \times 7 \mathrm{~m}$ panel or $3 \mathrm{~m} \times 3 \mathrm{~m}$ panel.
3) Calculate the area and perimeter of the following rectilinear shapes (not to scale).
a)

b)

Perimeter $=$ \qquad Area $=$
c)

\qquad Area $=$ \qquad
Perimeter $=$
\qquad Area $=$ \qquad

Perimeter $=$
2) Give the missing values for each shape.

1) Investigate if Alice's and Oliver's statements are true or false by drawing example shapes for each.

I can draw a shape with the same perimeter and the same area.

I can draw two shapes that have an area of $4 \mathrm{~cm}^{2}$ but different perimeters.
2) Three of these squares are made into a new shape.

a) Do you agree with Ben's statement? What mistake do you think he has made?
\qquad
\qquad
\qquad
b) Give the area and perimeter of the new shape.

1) A shop sells fence panels with a wooden frame going all the way round each panel. The price of each panel is based on the area of the panel and the length of the wooden frame around the panel.

Use the prices given to investigate how much the shop charges per square metre of the panel and per metre for the wooden frame.
a) Each $1 \mathrm{~m}^{2}$ of fence panel costs:
\qquad
\qquad
b) 1 metre of wooden frame costs:
\qquad
\qquad

2) Give the size of rectilinear fence panel you could buy from the shop with the following amounts of money. (Remember the shop only sells fence panels which have sides measuring a whole number of metres.)
a) $£ 280$
\qquad
\qquad
b) $£ 300$

1) Calculate the area and perimeter of the following rectilinear shapes (not to scale).

a)

2) Give the missing values for each shape.

3) Investigate if Alice's and Oliver's statements are true or false by drawing example shapes for each.

I can draw two shapes that have an area of $4 \mathrm{~cm}^{2}$ but different perimeters.

2) Three of these squares are made into a new shape.

a) Do you agree with Ben's statement? What mistake do you think he has made?
b) Give the area and perimeter of the new shape.

1) Calculate the area and perimeter of the following rectilinear shapes (not to scale).

a)

2) Give the missing values for each shape.

3) Investigate if Alice's and Oliver's statements are true or false by drawing example shapes for each.

Oliver
I can draw a shape with the same perimeter and the same area.
2) Three of these squares are made into a new shape.

a) Do you agree with Ben's statement? What mistake do you think he has made?
b) Give the area and perimeter of the new shape.

1) A shop sells fence panels with a wooden frame going all the way round each panel. The price of each panel is based on the area of the panel and the length of the wooden frame around the panel.

Use the prices given to investigate how much the shop charges per square metre of the panel and per metre for the wooden frame.
a) Each $1 \mathrm{~m}^{2}$ of fence panel costs:
b) 1 metre of wooden frame costs:

2) Give the size of rectilinear fence panel you could buy from the shop with the following amounts of money. (Remember the shop only sells fence panels which have sides measuring a whole number of metres.)
a) $£ 280$
b) $£ 300$

A shop sells fence panels with a wooden frame going all the way round each panel. The price of each panel is based on the area of the panel and the length of the wooden frame around the panel.

Use the prices given to investigate how much the shop charges per square metre of the panel and per metre for the wooden frame.
a) Each $1 \mathrm{~m}^{2}$ of fence panel costs:
b) 1 metre of wooden frame costs:

1) Give the size of rectilinear fence panel you could buy from the shop with the following amounts of money. (Remember the shop only sells fence panels which have sides measuring a whole number of metres.)
a) $£ 280$
b) $£ 300$

Area and Perimeter Using Half Units

I can investigate shapes with the same area but different perimeters.

1. Find and record all the squares or rectangles you can find with an area of $24 \mathrm{~cm}^{2}$. Use both whole and half units for the measurements of sides.

Side 1	Side 2	Perimeter

2. Find and record all the squares or rectangles you can find with an area of $36 \mathrm{~cm}^{2}$. Use both whole and half units for the measurements of sides.

Side 1	Side 2	Perimeter

3. Find and record all the squares or rectangles you can find with an area of $30 \mathrm{~cm}^{2}$. Use both whole and half units for the measurements of sides.

Side 1	Side 2	Perimeter

Area and Perimeter Using Half Units Answers

1.

Side 1	Side 2	Perimeter
48 cm	0.5 cm	97 cm
24 cm	1 cm	50 cm
16 cm	1.5 cm	35 cm
12 cm	2 cm	28 cm
8 cm	3 cm	22 cm
6 cm	4 cm	20 cm

2.

Side 1	Side 2	Perimeter
0.5 cm	72 cm	145 cm
1 cm	36 cm	74 cm
1.5 cm	24 cm	51 cm
2 cm	18 cm	40 cm
3 cm	12 cm	30 cm
4 cm	9 cm	26 cm
4.5 cm	8 cm	25 cm
6 cm	6 cm	24 cm

3.

Side 1	Side 2	Perimeter
0.5 cm	60 cm	121 cm
1 cm	30 cm	62 cm
1.5 cm	20 cm	43 cm
2 cm	15 cm	34 cm
2.5 cm	12 cm	29 cm
3 cm	10 cm	26 cm
5 cm	6 cm	22 cm
7.5 cm	4 cm	23 cm

Measurement | Same Area, Different Perimeter

I can find shapes with the same area but different perimeters.		
I can find squares and rectangles which have the same area.		
I can organise my results to ensure I have found all possible variations.		

Measurement | Same Area, Different Perimeter

I can find shapes with the same area but different perimeters.		
I can find squares and rectangles which have the same area.		
I can organise my results to ensure I have found all possible variations.		

Measurement | Same Area, Different Perimeter

I can find shapes with the same area but different perimeters.		
I can find squares and rectangles which have the same area.		
I can organise my results to ensure I have found all possible variations.		

Measurement | Same Area, Different Perimeter

I can find shapes with the same area but different perimeters.		
I can find squares and rectangles which have the same area.		
I can organise my results to ensure I have found all possible variations.		

Measurement | Same Area, Different Perimeter

I can find shapes with the same area but different perimeters.

I can find squares and rectangles which have the same area.

I can organise my results to ensure I have found all possible variations.

Measurement | Same Area, Different Perimeter

I can find shapes with the same area but different perimeters.

I can find squares and rectangles which have the same area.

I can organise my results to ensure I have found all possible variations.

Measurement | Same Area, Different Perimeter

I can find shapes with the same area but different perimeters.

I can find squares and rectangles which have the same area.

I can organise my results to ensure I have found all possible variations.

Measurement | Same Area, Different Perimeter

I can find shapes with the same area but different perimeters.

I can find squares and rectangles which have the same area.

I can organise my results to ensure I have found all possible variations.

